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Abstract
Previous work has shown that if fF minimizes Fisher information IF[f̃ ]
associated with distribution f̃ , then −IF[fF] obeys a Gibbs equation and agrees
with Jaynesian entropy in equilibrium in a classical fluid. When ∂f̃ /∂t obeys a
Fokker–Planck equation, IF[f̃ ] and also the Tsallis information measure with
Tsallis parameter q = 2 satisfy H-type theorems for some processes. −IF has
some properties of a statistical entropy model. An exact equation is obtained
here for ∂fF/∂t and shows that −{∂IF[fF]/∂t}irrev is not always �0 in heat
conduction or viscous relaxation, so that IF[fF] does not satisfy a condition
imposed by non-equilibrium thermodynamics. By contrast, similar arguments
do not invalidate Jaynesian entropy as a thermodynamic model.

PACS numbers: 05.70.Ln, 05.70.Ce, 05.20.Jj

1. Introduction

In a previous paper [1] a comparison has been made of the Shannon [2] and Fisher [3] measures
of information contained in the distribution f̃ (x) for a classical fluid in the space of phase
coordinates x. We shall designate these measures by IJ[f ] and IF[f ] respectively. If fJ

minimizes IJ and fF minimizes IF subject to specification of the values of a set of measurable
variables, then −IJ[fJ] in the first instance and −IF[fF] in the second are functions having at
least many of the properties of thermodynamic entropy [4]. The first of these statistical entropy
models comes from the work of Jaynes [5] and will be called SJ while the second will be called
SF. fF has been shown for a gas [6, 7] and for a fluid of interacting particles [1] to agree with
the Boltzmann distribution in equilibrium, and SF agrees in equilibrium with the Jaynesian
model. fF was shown in [4, 6] to agree in non-equilibrium with classical results of Rumer and
Rivkin [8]. In the present paper, we examine SF in non-equilibrium to see whether it satisfies
the principle of positive definiteness of irreversible entropy production. Significant cases are
found where it does not. If −IF[fF] is not a thermodynamic entropy model, this fact has no
bearing on the use of IF[f̃ ] as an information measure or on statistical inference based on this
measure. The property ascribed to thermodynamic entropy,namely that it increases throughout
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an irreversible process occurring at a finite rate in an isolated system (entropy principle), is a
requirement in addition to information minimization on which statistical inference is based. In
what follows the term entropy will always refer to −Iw[fw] (w = J, F), and the corresponding
Iw[f̃ ] will be called information.

To calculate SF[fF], we find the Euler equation for fF which minimizes IF[fF] subject to
the available experimental information. This information consists in measured values of a set
of variables {Ai} where

Ai =
∫

fF(x)Âi(x) dx =
∫

f (x)Âi(x) dx (1 � i � ν). (1)

The operators {Âi(x)} are functions such as Ĥ (x), the Hamiltonian, or �̂Q(x), the heat flux, at
point x in phase space. f is the solution of the Liouville equation. The variational problem in
the notation used here is

δIF[fF] −
∫

dx δfF

[
α +

ν∑
i=0

λiÂi(x)

]
= 0 (2)

where α and {λi({Ai})} are Lagrange multipliers. These are chosen to make the solution of
(2) satisfy (1) identically. α assures that fF is normalized to unity. This variational calculation
is described in chapter 3 of [6] and also in [1, 4].

If we set fF ≡ ψ2, the Euler equation for (2) has the simplified form in the case of an
interacting fluid [1, 4]:

(4�p/ψ)∂2ψ/∂ �P 2 + (4�c/ψ)∂2ψ/∂ �R2 + α +
ν∑

i=0

λiÂi(x) = 0 (3a)

β�p = 1
2 m (3b)

4�c = �
2β/2m. (3c)

The structure of (3a) is discussed in section 2. ∂ψ/∂ �P and ∂ψ/∂ �R are 3N dimensional
gradients, respectively, in the spaces of particle momenta { �pi} and configuration coordinates
{�ri}. (3b) and (3c) with β = (κT )−1 are values chosen to assure that fF is the usual canonical
distribution in equilibrium if the system interacts weakly with a heat bath at temperature T.
κ is the Boltzmann constant.

From (2) we can readily obtain [4] with SF = −κIF[fF], λ0 = −β, Â0 = Ĥ (x):

(1/κβ) dSF = −
∑
i�0

(λi/β) dAi. (4)

If we identify SF with thermodynamic entropy S, (κβ)−1 with thermodynamic temperature
T and λi/β (i > 0) with the thermodynamic force 
i associated with Ai , then (4) has the
form of the Gibbs equation which is one of the fundamental postulates of non-equilibrium
thermodynamics [9]. This identification of {λi} permits us to ascribe thermodynamic
significance to the statistical Lagrange multipliers. The thermodynamic forces are defined
in such a way that their values are measurable, and so we have a way of measuring {λi}.
T in thermodynamics is operationally defined. Here β = (κT )−1 where T is the temperature
of the heat bath which is constant and can be measured with a thermometer. Identification
of Lagrange multipliers with quantities in the thermodynamic Gibbs equation is common in
texts on equilibrium statistical mechanics and has been used in calculating SJ. For dSJ, one
has an equation closely resembling (4) which can be compared with the Gibbs equation in the
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same way. Interaction with the bath is weak and there is negligible exchange of heat and work
with the surroundings; thus there is no work term in the Gibbs equation. The {λi} (i > 0)

vanish in equilibrium where SF is the usual canonical entropy [1], as is also demonstrated
by Frieden [6] for a gas. The fact that the model SF has the property (4) and can generate
Legendre transformations of thermodynamic potentials in equilibrium and non-equilibrium
has been observed by Frieden [10].

Equation (4) can be used to derive an expression for the rate ṠF of Fisher entropy
production in terms of the rates {Ȧi}. Exact equations for the time derivatives {Ȧi} can be
derived from the Liouville equation via a projection operator technique of Robertson [11]. We
can use these results to check whether the irreversible part of ṠF satisfies ṠF,irrev � 0 [9].

It has been shown [12] that if f̃ (x, t) obeys a Fokker–Planck equation, as it does for some
systems and processes, then IF[f̃ ] satisfies an H-type theorem [13]. Thus, for the processes in
question, dIF/dt � 0. This is not the same as the entropy principle, because SF = −κIF[fF]
is not the same as −κIF[f̃ ] when we measure only a finite number of variables. However, in a
dilute gas, where f̃ obeys the kinetic theory Boltzmann equation and dIJ[f̃ ]/dt � 0 [13], the
existence of an H-type theorem appears to be a concomitant of the appearance of irreversible
behaviour. As we shall find in what follows, by considering a classical fluid for which f̃

obeys the Liouville equation, SF does not, in general, obey the entropy principle. There may,
however, exist an H-type theorem for an information measure dependent on g(a1, . . . , aν),
a distribution in a-space, the space of numerical values of the {Âi}. Existence of a
Fokker–Planck equation or an H-type theorem is not an argument for using −κIF[fF] as
a statistical entropy model in non-equilibrium.

Section 2 summarizes the arguments from [1] to the effect that in many cases,
fJ = fF + O(λ2), for a gas interacting weakly with a heat bath. This shows that fJ and
fF obey the same kinetic equation neglecting non-linear terms which, in a fluid, are negligibly
small. In section 3 the exact general kinetic equation for ∂fF/∂t is derived, following the

method of Robertson [11]. By taking a moment of this equation, we obtain an equation for �̇Q,
the rate of change of heat flux �Q. Coefficients of this rate equation do not satisfy a necessary
condition for compatibility with the entropy principle. Therefore, in the significant case of
heat conduction, SF is not a model for non-equilibrium thermodynamic entropy.

In section 5, it is shown that, for certain processes in a classical fluid, there are information
measures which satisfy an H-type theorem while the distribution corresponding to f̃ obeys a
Fokker–Planck equation to a good approximation. The sample space over which the system
is distributed is the space of possible values {ai} of the set {Âi} (fluctuation space). The
information measure is not necessarily Fisher entropy. Such an H-type theorem can be proved
for an entropy model appropriate to Tsallis statistics [14] even if not for IF[f̃ ]. As has been
observed, the existence of an H-type theorem does not imply that the entropy principle is
satisfied. Where it is not, IF and fF may be useful in statistical inference, but not in calculation
of thermodynamic potentials.

2. Arguments that fF can approximate fJ for many processes in gases

In an N-particle fluid in phase space, the Fisher information takes the form [1]

I [f̃ ] = �p

∫
dxf̃ −1[∂f̃ /∂ �P ]2 + �c

∫
dxf̃ −1[∂f̃ /∂ �R]2. (5)

I [f̃ ] given here specializes the form given by Frieden [7] for multivariate distributions to the
present problem. �p and �c given by (3b) and (3c) assure commensurability of the two terms
in (5) and agreement of fF with the canonical distribution in equilibrium. It should be possible



2446 R E Nettleton

to make �p and �c equal if �P , �R are expressed in terms of dimensionless variables. (5) has
been used in (2) to yield the Euler equation (3a) for fF. Consider, for simplicity, the case
where there is one variable A1 which is a tensor of some arbitrary specified order. Then λ1Â1

in (3a) can be written as a contracted tensor product λ1 � Â1. The solution to (3a), to terms
linear in λ1, can be put in the form

ψ = ψ0[1 + λ1 � φ1] + O
(
λ2

1

)
(6)

where ψ0 is the equilibrium solution to (3a) which, in a system in equilibrium with a heat
bath, is proportional to a Maxwell–Boltzmann distribution in �P space. When there are several
variables, λ1 � φ1 is replaced by∑

k�1

λk � φk.

In a dilute gas, Â1 = Â1( �P ) and φ1 = φ1( �P ). Putting (6) into (3a), we get for φ1 the
equation

Ô( �P)φ1 ≡ 2[mκT ∂2φ1/∂ �P 2 − �P · ∂φ1/∂ �P ] = −Â1. (7)

This equation is readily solved when Â1 is an eigenfunction of Ô( �P ). If we define
�̄pk ≡ �pk/(mκT )

1
2 , the dimensionless momentum of particle k, and if H(n)( �̄pi) is a tensor

Hermite function of tensorial order n [15], then

Ô( �P)H (n)( �̄pi) = −2nH(n)( �̄pi). (8)

One should note here that the H(n) defined by Grad are not ordinary Hermite polynomials.
The H(n) are eigenfunctions of Ô( �P ). In the particular case n = 2, if A1,ij = Pij , the pressure,
then the solution of (7), according to (8), is

φ1,ij = 1

4

κT

V

N∑
i=1

H
(2)

ij ( �̄pk). (9)

In the kinetic theory formulated by Grad [16], the pressure and heat flux of a perfect gas
are represented by tensor Hermite functions with n = 2 and n = 3, respectively, with a single
contraction in the case of heat flux �Q. Thus

V Q̂i = 1

2
m− 1

2 (κT )3/2
N∑

j=1

p̄ji

(
p−2

j − 5
)

= 1

2
m− 1

2 (κT )3/2
∑
j,k

H (3)
ikk( �̄pj) (i = x, y, z). (10)

The corresponding φ1 satisfying (7) is then proportional to the sum on the right-hand side of
(10), in the same way that (9) follows when Â1 is a sum of H(2) functions.

Accordingly, in a dilute gas, as long as {Âi} are represented as in the Grad theory by
tensor Hermite functions H(n)( �̄pk), φi is proportional to Âi (1 � i � ν). This is precisely the
result we obtain in the linearized Jaynes distribution [5] with ψJ having the form (6) and with
a Lagrange multiplier satisfying

λ̃J = −λF/ni (1 � i � ν). (11)

λF is the Lagrange multiplier in the Fisher distribution when we measure the same set {Âi}.
Thus we have shown that if the Jaynesian multipliers are related to the Fisher ones by

(11), then fF = FJ +O(λ2) is an exact solution of the Fisher Euler equation (3a) to terms linear
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in λ. The functions fF and fJ are the same, neglecting O(λ2), if the specified information is
the same. In section 3 we show that the technique of Robertson [11] can be used to derive an
equation for ∂fF/∂t which is solved exactly by the solution of the Euler equation. To terms
linear in λ, this equation will be the same as the existing equation derived [16] for ∂fJ/∂t . By
examining the latter, we can see whether the coefficients in the moment equation for ∂ �Q/∂t

satisfy the conditions for validity of the entropy principle when ṠF is calculated from (4).

3. Exact equations for ∂fF/∂t and d �Q/dt

Once one has obtained, by solving (3a) to an arbitrary order in λ, a phase-space distribution
fF(x), the Robertson method [11] readily yields an equation for ∂fF/∂t satisfied exactly by
this fF to the same order in λ. Let

ḟ = −iL̂f (12)

be the Liouville equation, where L̂ is the Liouville operator. Let the operators {Âi(�r, x)}
represent a set of variables such as heat flux or pressure at point �r in a non-uniform fluid. For
an arbitrary integrable phase function χ(x), define the Robertson operator

P̂ RFχ(x) ≡
∑

i

∫
d�r{δfF/δAi(t, �r)}Tr{Âi(�r, x)χ}. (13)

Given that fF depends on time through its dependence on the variables {Ai(t, �r)}, we have

ḟ F =
∑

i

∫
d�r{δfF/δAi(t, �r)}(∂/∂t)Tr{Âi(�r, x)f } = P̂ RFḟ . (14)

Operating with P̂ RF on (12), we can find an exact equation for the time derivative of the
function fF obtained by solving (3a).

In terms of P̂ RF, we can define T̂F(t, t
′) which solves

∂T̂F(t, t
′)/∂t ′ = iT̂F(t, t

′)[1 − P̂ RF(t
′)]L̂. (15)

Then from (13)–(15) it follows [17] that

ḟ F = −iP̂ RF(t)L̂fF(t) −
∫ t

0
dt ′P̂ RF(t)L̂(t)T̂F(t, t

′)[1 − P̂ RF(t
′)]L̂(t)fF(t

′). (16)

Multiplying (16) by Âi(�r, x) and integrating over phase space, we obtain rate equations for
{Ȧi (�r, t)} which, taken together with the solution of the Fisher Euler equation, provide an
exact solution to (16).

In the particular cases described in section 2, e.g. a dilute gas in equilibrium with a heat
bath, where Âi = Âi( �P ), it is pointed out that fF = fJ to leading order in λ. Therefore, to
this order P̂ RF = P̂ RJ, and equation (16) is identical to an earlier result [17] for fJ derived
from Robertson’s work [11]. The linear approximation to (16) and the moment equation for
�Q, which suffice for our purposes, have been shown [18] to be more exact than is apparent

from the Robertson approach.
Applying the earlier result to a dilute gas where the heat flux operator is given by (10),

we multiply (16), in which P̂ RF = P̂ RJ, by �̂Q, given by

�̂Q(�r, x) =
N∑

i=1

{(
p2

i

/
2m

) − 5

2
κT (�ri)

}
( �pi/m)δ(�ri − �r) (17)
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to obtain an equation for ∂ �Q/∂t , where �Q ≡ ∫
f �̂Q dx. The linearized fJ = fF + O(λ2)

has the form (6). To obtain the term in �̇Q linear in ∇�rT , we substitute fJ = ψ2
J =

ψ2
0

[
1 − ∫

d�rλ̃Q(�r) �̂Q(�r, x)
]

+ O
(
λ̃2

Q

)
, with

ψ2
0 = Z−1 exp

[
−

∫
d�rβ(�r, t)Ĥ (�r, x)

]
(18a)

Ĥ (�r, x) =
N∑

j=1

(
p2

j

/
2m

)
δ(�rj − �r) (18b)

into the first term on the right-hand side in (16). Z is a normalization factor, and
β(�r, t) = [κT (�r, t)]−1. If �Q(�r, t) and T (�r, t) are the only variables, the linearized moment
equation for �Q obtained from (16) after substitution of (18a) has the form [19]

�̇Q = −(1/τQ) �Q − KQT −1∇�rT (19a)

KQ ≡ 5N(κT )2/2V m. (19b)

∇�rT is assumed small, and T in KQT −1 is a constant average temperature. Equation (19a) is
the Cattaneo–Vernotte equation of extended thermodynamics [9].

4. Failure of SF to satisfy the entropy principle in heat conduction

The heat flux �Q(�r, t) at �r is both a variable and a thermodynamic flux in the formalism
of extended thermodynamics [9]. From the matching conditions (1) in which we use the
linearized fJ, we find [19] the linearized relation

�Q(�r, t) = −KQλ̃Q/β. (20)

Comparison of (19a) and (20) shows that if the thermodynamic force associated with �Q were
λ̃Q/β as in Jaynesian statistics, then the phenomenological coefficient linking the flux �Q(�r, t)
to λ̃Q/β is the negative of the coefficient linking �̇Q to −T −1∇T . This anti-reciprocal relation
is a necessary condition for positive definiteness of the irreversible entropy production, ṠJ,irrev.
The Jaynesian entropy production ṠJ is calculated from the Gibbs equation

T dSJ =
∑

i

(λ̃i/β) dAi. (21)

From (11) and (20), we deduce

λ̃Q = −λQ/n = −λQ/3 = βφQF/3 (22)

since n = 3. φQF = −λQ/β is the thermodynamic force associated with �Q in Fisher statistics,
according to (4). The factor 1/3 in (22) means that if (22) is substituted into (20), the coefficient
of φQF in (20) is not without the coefficient of T −1∇�rT in (19a), and so ṠF,irrev calculated from
(4) will not be positive definite. A similar result follows for the momentum flux, P. We have
∂P/∂t coupled to the gradient ∇�u of mass velocity and also P proportional to λP = βφP F/2,
by analogy with (22).

Thus we conclude that, for heat conduction in a fluid, SF cannot be used as a statistical
model for non-equilibrium thermodynamic entropy. If the phenomenological description does
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not involve flows of heat, momentum or particles, this difficulty does not arise. In this case,
suppose that

ṠJ =
∑

k

(λ̃Jk/β)Ȧk =
∑
k,p

β−2(λ̃JkLkpλ̃Jp)

=
∑
k,p

β−2(λ̃FkLkpλFp/nknp) � 0. (23)

Then we cannot in general expect that

ṠF =
∑
k,p

β−2λFkLkpλFp/np (24)

will be � 0. Therefore, if the phenomenological equations couple thermodynamic forces
associated with variables which are contractions of tensors of different tensorial order, ṠF will
not, in general, satisfy the entropy principle if ṠJ does.

5. Fisher and Jaynes statistics in fluctuation space

Since it has been found in the previous section that ṠF will not satisfy the entropy principle
in many cases, we are led to ask whether this is consistent with the observation [12] that
IF[f̃ ] may, for some processes, obey an H-type theorem if f̃ satisfies, to a sufficiently good
approximation, a Fokker–Planck equation. The H-theorem in gas kinetic theory is often taken
as an embodiment of the second law of thermodynamics in non-equilibrium [20]. To examine
this question, we are led to study a distribution occurring in the statistical mechanics of fluids
which obeys a Fokker–Planck equation approximately, leading to an approximate H-type
theorem very similar to that used in the work of Plastino and Plastino [12].

Consider a fluid which is isolated, so that its phase-space distribution obeys the Liouville
equation (12). Here we do not introduce a heat bath which is not essential to the argument.
If the measured values are represented by a set {Âi(x)} of phase functions, the probability
g(a) da that Âi is observed to have a value between ai and ai + dai (1 � i � ν) has been
given by Zwanzig [21] as

da ≡
ν∏

i=1

dai (25a)

g(a, t) =
∫

f (x, t)ψa dx (25b)

ψa ≡
ν∏

i=1

δ(Âi − ai) (25c)

δ(Âi −ai) in (25c) is a Dirac delta, and f (x, t) solves the Liouville equation. The phase-space
integration in (25b) is over an energy shell centred at the surface Ĥ (x) = E, where Ĥ (x) is
the Hamiltonian. The equilibrium distributions f0, g0 are given by

f0(x) = Ṽ −1
E (26a)

g0(a) = Ṽ −1
E

∫
ψa dx ≡ ṼE�(a) (26b)

where ∇̃E is the volume of the energy shell. The space of vectors (a1, . . . , aν) will be called
‘fluctuation space’. The observed values of the set {Âi(x)} will fluctuate around the set {Ai(t)},
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and g(a, t) will be the probability amplitude for observing the values (a1, . . . , aν) at time t.
We have

Ai(t) =
∫

g(a)ai da =
∫

Âi(x)f (x, t) dx (1 � i � ν). (27)

An exact Fokker–Planck-type equation for ∂g/∂t has been derived by Grabert [22] from
the Liouville equation. The derivation introduces the Zwanzig–Grabert projection operators,

P̂ Zχ(x) =
∫

da g−1
0 Tr(f0ψaχ)ψa(x) (28a)

P̂ T
Zχ(x) = f0

∫
da g−1

0 Tr(ψaχ)ψa(x) (28b)

and the initial condition,

P̂ Zf (x, 0) = f (x, 0). (29)

One obtains [22]

(∂/∂t)g(a, t) = −
∑

i

(∂/∂ai){vi(a)g(a, t)} +
∫ t

0
ds

∑
i,j

(∂/∂ai)

×
∫

da′ Dij (a, a′, t − s)g0(a
′)(∂/∂a′

j ){g(a′, x)/g0(a
′)} (30a)

vi(a) ≡ Tr(f0Ȧiψa)/g0(a) (30b)

Ȧi(x) ≡ iL̂Âi(x) (30c)

Dij (a, a′, t − s) ≡ {g0(a
′)}−1 Tr{f0Ri(a, t)Rj (a

′, s)} (30d )

Ri(a, t) ≡ (1 − P̂ Z)[exp{iL̂(1 − PZ)t}Ȧiψa]. (30e)

In addition to a Fokker–Planck-type equation for g(a, t) which, as we shall point out in the
following section, can have a diffusion kernel Dij which is positive definite for some processes,
we need an information measure I (g) in a-space. This can be used, via mathematical arguments
analogous to those previously discussed [12], to prove an H-type theorem applicable to the
processes in question.

Let us consider first the Jaynes distribution gJ(a). In phase space [5],

fJ(x) = f0Z
−1 exp

[
−

∑
k

λ̃kÂk

]
(31)

where {λ̃k} are the Lagrange multipliers. From (25b), the corresponding distribution in a-space
is

gJ(a) =
∫

fJ(x)ψa dx = g0Z
−1 exp

[
−

∑
k

λ̃kak

]
. (32)

This distribution is obtained by minimizing

IJ(g) =
∫

g ln(g/g0) da (33)

subject to

Ai(t) =
∫

g(a)ai da =
∫

gJ(a)ai da (1 � i � ν). (34)

Thus information measures and associated distributions can exist in a-space which are
consistent with (25b).
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6. H-type theorems in fluctuation space

Consider the functional

Ĩ J[g] ≡
∫

da(g2/g0). (35)

Ĩ J may be said to approximate IJ in the sense that minimizing Ĩ J subject to conditions (34)
yields the same result as (33) and (34) with accuracy O(λ̃). Higher orders in λ̃ are not generally
significant in a simple fluid where non-linear effects have been predicted to be negligibly small
[23, 24] save in viscoelasticity at high shear rates. As we shall point out in the following
section, Ĩ J is the Tsallis information model [14] corresponding to Tsallis parameter q = 2.

From (30a) and (36),

(∂/∂t)Ĩ J[g] = 2
∫

da(g/g0)(∂g/∂t) = −2
∑

i

∫
(g/g0)(∂/∂ai){vi(a)g(a, t)} da

+ 2
∫ t

0
ds

∫
da

∑
i,j

(g/g0)

∫
da′(∂/∂ai)Dij (a, a′, t − s)g0(a

′)

× (∂/∂a′
j ){g(a′, s)/g0(a

′)}. (36)

Using (30b), we can put the first term on the right-hand side in (36) in the form∫
−2

∑
i

(g/g0)(∂/∂ai)(vig) da = f0

∫ ∑
i

∫
(∂/∂ai)(g/g0)

2Tr(Ȧiψa) da

= f0

∫
(g/g0)

2Tr(iL̂ψa) da = 0. (37)

A partial integration serves to put the remaining terms in (36) in the form

(∂/∂t)Ĩ J = −2
∫ t

0
ds

∫
da

∑
i,j

(∂/∂ai)(g/g0)

∫
da′Dij (a, a′, t − s)g0(a

′)

× (∂/∂a′
j ){g(a′, s)/g0(a

′)}. (38)

It has been shown by Grabert [22] that

Dij (a, a′, t−s) = ∂(a−a′)[g0(a)]−1 Tr[f0{Ȧi(t)−vi(a)}{Aj(s) − vj (a)}] + O(Ȧ3). (39)

O(Ȧ3) is small if the particle interactions are weak.
If {Âi} are all even under inversion in configuration or momentum space, then all {vi(a)}

vanish. We can imagine a process in which Dij is proportional to the integral of a time
correlation function 〈Ȧi(t)Ȧj (t − s)〉. The {Âi} can be constructed as sums of orthogonal
functions, e.g. sinusoidal, so that Dij = 0 if i �= j and so that the time integral of the
correlation is �0. Since g(a, t) is a distribution, g � 0, and so from (36)

(d/dt)Ĩ J[g] � 0. (40)

The reasoning of (35)–(40) resembles closely that of Plastino and Plastino [12] which
can be carried over to prove a similar theorem for IF[g] provided g belongs to a family of
two-parameter solutions to (30a). Suppose that the parameters are ζ1 and ζ2 and that the
solutions are g(a, ζ1, ζ2). Take

IF[g] ≡ �1

∫
dag−1(∂g/∂ζ1)

2 + �2

∫
da(∂g/∂ζ2)

2. (41)

From the fact that g, ∂g/∂ζ1 and ∂g/∂ζ2 are all solutions of (30a), then from [12] it follows
that if �1 > 0 < �2, then the time derivatives of the terms in IF[g] are both �0, and thus
(d/dt)IF[g] � 0.
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ζ1 and ζ2 should be parameters suggested by the symmetries of (30a). We can note
from (25b) that if f = f (x, ζ1, ζ2), then g = g(a, ζ1, ζ2). Since the Liouville equation is
invariant under translations in momentum and configuration space, ζ1 and ζ2 can represent
these translations. Therefore, an H-type theorem for IF[f ] can exist even where IF[fF] is not
consistent with the entropy principle.

7. Discussion

It has not been shown that IF in a fluid never obeys the entropy principle and never has all the
properties of thermodynamic entropy. The heat conduction counterexample in section 4 does
not apply in a uniform system or when we are not concerned with transport. The demonstration
of (22) and (23) will not apply if the set {Ȧi} does not involve contracted tensors whose order
was different before contraction. What has been shown in earlier work is that the Jaynesian
entropy satisfies the anti-reciprocity relation violated by having n = 3 in (22) and gives the
usual fluctuation–dissipation theorem result for thermal conductivity [25]. Therefore SJ is
useful in commonly-encountered cases where SF is not.

While an H-type theorem applies to IF[g] and not to the thermodynamic entropy model
IF[gF] and thus does not support use of the latter, the H-type theorem testifies to the stability of
certain solutions of the Fokker–Planck equation which are relevant to the particular processes
in question. It has never been possible to show that Dij is positive definite for all exact
solutions of the Zwanzig–Grabert equation (37), and the second law of thermodynamics does
not appear to imply that all exact solutions must be stable. It has been possible to show [26] that
IJ increases in irreversible processes observed over timescales encountered in practice. The
relevant distribution is fJ which depends on a finite number of variables which are measured
in any given experiment. The H-type theorems refer to a distribution f̃ from which we can
calculate an infinite number of moments. Thus in gas-kinetic theory the Boltzmann H-theorem
expresses the second law for the case where we can measure an infinite number of moments
[27], which does not happen in practice.

Although IF[fF], where fF is the optimal distribution calculated from (3a), is not, in
general, a model for thermodynamic entropy, there is no indication in preceding sections that
Fisher statistics is not a useful method of statistical inference. SF = −κIF [fF] is required to
obey the entropy principle if it is to be used as a model in calculating thermodynamic entropy
in one of the formulations of irreversible thermodynamics for which positive definiteness of
irreversible entropy production is a basic postulate. There is no such requirement on IF[f̃ ]
which is minimized to give fF. fF can be used to make useful predictions. fF from (3a)
agrees with fJ to O(λ) for a set {Ai} of variables large enough for the linear non-equilibrium
description of a classical fluid in equilibrium with a heat bath. One can add to the solution of
(3a) a solution of the homogeneous part, which is not dependent on α and {λi}. This solution
contains adjustable constants whose values can be fitted to information of a different type
from the kind contained in specification of {Ai}, e.g. the measured values of rate constants or
relaxation times.

The information measure Ĩ J[g] has been presented as an approximation to IJ in the sense
that minimization of Ĩ J yields the Jaynes fJ to terms linear in λ. There is an indication,
however, that Ĩ J may have thermodynamic significance in its own right. The ‘purity’ in a
system where Wn is the probability of state n is

Pw({Wn}) ≡
∑

n

W 2
n . (42)
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There is a correspondence [14] between minima of Pw and of IJ, and indeed Pw may at times
serve as an effective thermodynamic potential. Pw agrees, to an additive constant, with the
Tsallis entropy [14],

Sq = {k/(q − 1)}
[

1 −
∑

n

Wq
n

]
(43)

for the case q = 2.1 The Tsallis S2 has been used [18] in obtaining a linearized version
of the Robertson formalism [11] which argues that the linear approximation to (16) is more
exact than is apparent from the reasoning of Robertson. It has also been shown [28] that by
maximizing Sq , one obtains a statistical analogue of the thermodynamic Gibbs equation.
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